Semiconductor Nanocrystals as Light Harvesters in Solar Cells
نویسنده
چکیده
Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.
منابع مشابه
Fabrication of Dye-Sensitized Solar Cells Using Native and Non-Native Nanocrystals in Ferritin as the Dye
Recent studies have demonstrated the potential of different nanocrystals synthesized in ferritin to act as light harvesters for high-efficiency solar cells. This study investigates the possibility of using these nanocrystals as alternative dyes for dye-sensitized solar cells. Four different dye-sensitized solar cells were successfully fabricated using iron, cobalt, manganese, and lead-sulfide n...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملHigh-performance nanostructured inorganic-organic heterojunction solar cells.
We report all solid-state nanostructured inorganic-organic heterojunction solar cells fabricated by depositing Sb(2)S(3) and poly(3-hexylthiophene) (P3HT) on the surface of a mesoporous TiO(2) layer, where Sb(2)S(3) acts as an absorbing semiconductor and P3HT acts as both a hole conductor and light absorber. These inorganic-organic light harvesters perform remarkably well with a maximum inciden...
متن کاملIn-situ growth of CdSe-P3HT nanocomposites
Introduction CdSe-P3HT (poly(3-hexylthiophene))) nanocomposites are studied for their application in hybrid solar cells. Semiconductor inorganic/organic hybrid solar cells offer many advantages relative to their non-hybrid counterparts. They have the advantages of conjugated polymers such as light weight, flexibility, abundance of resources, the potential for roll-to-roll and non-vacuum process...
متن کاملInfluence of TiO2 layer thickness as photoanode in Dye Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) are categorized as some of inexpensive thin-film solar cells. The basis and foundation of these cells is a semiconductor that consists of an electrolyte and a light-sensitive anode. Titanium dioxide (TiO2) is a semiconductor that plays the role of anode and is the main constituent of these cells. In this paper, we have addressed the functionality and performan...
متن کامل